Функции безмиелиновых волокон

Функции безмиелиновых волокон

Рис. 7. Миелиновые нервные волокна из седалищного нерва лягушки, обработанного тетраоксидом осмия: 1 — слой миелина; 2 — соединительная ткань; 3 — нейролеммоцит; 4 — насечки миелина; 5 — перехват узла

Рис. 8. Межмышечное нервное сплетение кишечника кошки: 1 — безмиелиновые нервные волокна; 2 — ядра нейролеммоцитов

Отростки нервных клеток обычно одеты глиальными оболочками и вместе с ними называются нервными волокнами. Так как в различных отделах нервной системы оболочки нервных волокон значительно отличаются друг от друга по своему строению, то в соответствии с особенностями их строения все нервные волокна делятся на две основные группы — миелиноеые (рис.7) и безмиелиновые волокна (рис.8). Те и другие состоят из отростка нервной клетки (аксона или дендрита), который лежите в центре волокна и поэтому называется осевым цилиндром, и оболочки, образованной клетками олигодендроглии, которые здесь называются леммоцитами (шванновскими клетками).

Безмиелиновые нервные волокна

Находятся они преимущественно в составе вегетативной нервной системы. Клетки олигодендроглии оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи цитоплазмы, в которых на определенном расстоянии друг от друга лежат овальные ядра. В безмиелиновых нервных волокнах внутренних органов часто в одной такой клетке располагается не один, а несколько (10-20) осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в смежное. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа. При электронной микроскопии безмиелиновых нервных волокон видно, что по мере погружения осевых цилиндров в тяж леммоцитов последние одевают их как муфта.

Оболочка леммоцитов при этом прогибается, плотно охватывает осевые цилиндры и, смыкаясь над ними, образует глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки леммоцита образуют двойную мембрану — мезаксон, на которой как бы подвешен осевой цилиндр (рис.9).

Так как оболочка леммоцитов очень тонка, то ни мезаксона, ни границ этих клеток под световым микроскопом нельзя рассмотреть, и оболочка безмиелиновых нервных волокон в этих условиях выявляется как однородный тяж цитоплазмы, одевающий осевые цилиндры. С поверхности каждое нервное волокно покрыто базальной мембраной.

Рис. 9. Схема продольного(А) и поперечного (Б) сечения безмиелиновых нервных волокон: 1 — ядро леммоцита; 2 — осевой цилиндр; 3 — митохондрии; 4 — граница леммоцитов; 5 — мезаксон.

Миелиновые нервные волокна

Миелиновые нервные волокна значительно толще безмиелиновых. Диаметр поперечного сечения их колеблется от 1 до 20 мк. Они также состоят из осевого цилиндра, одетого оболочкой из леммоцитов, но диаметр осевых цилиндров этого типа волокон значительно больше, а оболочка сложнее. В сформированном миелиновом волокне принято различать два слоя оболочки: внутренний, более толстый, — миелиновый слой (рис.10), и наружный, тонкий, состоящий из цитоплазмы леммоцитов и их ядер.

Миелиновый слой содержит в своем составе липоиды, а поэтому при обработке волокна осмиевой кислотой он интенсивно закрашивается в темно-коричневый цвет. Все волокно в этом случае представляется однородным цилиндром, в котором на определенном расстоянии друг от друга располагаются косо ориентированные светлые линии — насечки миелина (incision myelini), ил и насечки Шмидта-Лантермана. Через некоторые интервалы (от нескольких сотен микронов до нескольких миллиметров) волокно резко истончается, образуя сужения — узловые перехваты, или перехваты Ранвье. Перехваты соответствуют границе смежных леммоцитов. Отрезок волокна, заключенный между смежными перехватами, называется межузловым сегментом, а его оболочка представлена одной глиальной клеткой.

В процессе развития миелинового волокна осевой цилиндр, погружаясь в леммоцит, прогибает его оболочку, образуя глубокую складку.

Рис. 10. Схема нейрона. 1 — тело нервной клетки; 2 — осевой цилиндр; 3 — глиальная оболочка; 4 — ядро леммоцита; 5 — миелиновый слой; 6 — насечка; 7 — перехват Ранвье; 8 — нервное волокно, лишенное миелинового слоя: 9 — двигательное окончание; 10 — миелиновые нервные волокна, обработанные осмиевой кислотой.

По мере погружения осевого цилиндра оболочка леммоцита в области щели сближается и ее два листка соединяются друг с другом своей внешней поверхностью, образуя двойную мембрану — мезаксон (рис.11).

При дальнейшем развитии миелинового волокна мезаксон удлиняется и концентрически наслаивается на осевой цилиндр, вытесняя цитоплазму леммоцита и образуя вокруг осевого цилиндра плотную слоистую зону — миелиновый слой (рис.12). Так как оболочка леммоцита состоит из липидов и белков, а мезаксон представляет собой ее двойной листок, то естественно, что миелиновая оболочка, образованная его завитками, интенсивно окрашивается осмиевой кислотой. В соответствии с этим под электронным микроскопом каждый завиток мезаксона виден как слоистая структура, построенная из белков и липидов, расположение которых типично для мембранных структур клеток. Светлый слой имеет ширину около 80-120 ? и соответствует липоидным слоям двух листков мезаксона. Посредине и по поверхности его видны тонкие темные линии, образованные молекулами белка.

Рис. 11. Схема развития миелинового волокна. 1 — контакт аксолеммы и оболочки леммоцита; 2 — щель; 3 — аксолемма и оболочка леммоцига; 4 — цитоплазма леммоцита; 5 — мезаксон

Шванновской оболочкой называется периферическая зона волокна, содержащая оттесненную сюда цитоплазму леммоцитов (шванновских клеток) и их ядра. Эта зона при обработке волокна осмиевой кислотой остается светлой. В области насечек между завитками мезаксона имеются значительные прослойки цитоплазмы, благодаря чему клеточные мембраны располагаются на некотором расстоянии друг от друга. Больше того, как видно на рис.188, листки мезаксона в этой области также лежат неплотно. В связи с этим при осмировании волокна эти участки не окрашиваются.

Читайте также:  Левомепромазин список

Рис. 12. Схема субмикроскопического строения миелинового нервного волокна: 1 — аксон; 2 — мезаксон; 3 — насечка миелина; 4 — узел нервного волокна; 5 — цитоплазма нейролеммоцита; 6 — ядро нейролеммоцита; 7 — нейролемма; 8 — эндоневрий

На продольном сечении вблизи перехвата видна область, в которой завитки мезаксона последовательно контактируют с осевым цилиндром. Место прикрепления самых глубоких завитков его наиболее удалено от перехвата, а все последующие завитки закономерно расположены ближе к нем у (см. рис.12). Это легко понять, если представить себе, что закручивание мезаксона идет в процессе роста осевого цилиндра и одевающих его леммоцитов. Естественно, что первые завитки мезаксона оказываются короче, чем последние. Края двух смежных леммоцитов в области перехвата образуют пальцеобразные отростки, диаметр которых равен 500 ?. Длина отростков различна. Переплетаясь между собой, они образуют вокруг осевого цилиндра своеобразный воротничок и попадают на срезах то в поперечном, то в продольном направлении. В толстых волокнах, у которых область перехвата относительно коротка, толщина воротничка из отростков шванновских клеток больше, чем в тонких волокнах. Очевидно, аксон тонких волокон в перехвате более доступен для внешних воздействий. Снаружи миелиновое нервное волокно покрыто базальной мембраной, связанной с плотными тяжами коллагеновых фибрилл, ориентированных продольно и не прерывающихся в перехвате — невралеммой.

Функциональное значение оболочек миелинового нервного волокна в проведении нервного импульса в настоящее время недостаточно изучено.

Осевой цилиндр нервных волокон состоит из нейроплазмы — бесструктурной цитоплазмы нервной клетки, содержащей продольно ориентированные нейрофиламенты и нейротубулы. В нейроплазме осевого цилиндра лежат митохондрии, которых больше в непосредственной близости к перехватам и особенно много в концевых аппаратах волокна.

С поверхности осевой цилиндр покрыт мембраной — аксолеммой, обеспечивающей проведение нервного импульса. Сущность этого процесса сводится к быстрому перемещению локальной деполяризации мембраны осевого цилиндра по длине волокна. Последнее определяется проникновением в осевой цилиндр ионов натрия (Nа + ), что меняет знак заряда внутренней поверхности мембраны на положительный. Это, в свою очередь, повышает проходимость ионов натрия в смежном участке и выход ионов калия (К + ) на внешнюю поверхность мембраны в деполяризованном участке, в котором восстанавливается при этом исходный уровень разности потенциалов. Скорость движения волны деполяризации поверхностной мембраны осевого цилиндра определяет быстроту передачи нервного импульса. Известно, что волокна с толстым осевым цилиндром проводят раздражение быстрее тонких волокон. Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Тонкие волокна, бедные миелином, и безмиелиновые волокна проводят нервный импульс со скоростью 1-2 м/сек, тогда как толстые миелиновые — 5-120 м/сек.

Взаимодействия между глиальными и нервными клетками отчетливо проявляются в процессах развития и структурной организации нервных волокон. Нервным волокном называется отросток нервной клетки, окруженный глиальной оболочкой.

Непосредственно сам отросток называют еще осевым цилиндром, а клетки глиальной оболочки — нейролеммоцитами. Различают миелиновые (мякотные) и безмиелиновые (безмякотные) нервные волокна.

В безмиелиновых нервных волокнах отростки нервных клеток погружены в углубления на поверхности нейролеммоцитов, имеющих вид желоба. Погруженный в тело глиальной клетки нервный отросток ограничен как собственной плазмолеммой, так и внешней мембраной нейролеммоцита. Он как бы подвешен на двухлистковой ее складке. Эти складки мембран (своеобразные ультраструктурные «брыжейки») называют мезаксонами. Безмиелиновые волокна могут включать несколько осевых цилиндров.

Миелиновое нервное волокно состоит из нервного отростка и нейролеммоцитов (шванновских клеток). Осевой цилиндр не просто погружен в цитоплазму нейролеммоцита, а окружен спиральной слоистой оболочкой (миелином), образованной наматыванием мезаксонов нейролеммоцитов при их вращении вокруг отростка нервной клетки. В миелиновой оболочке обнаружены липиды, щелочной белок миелина, маркерный белок S100 и др.

Высокое содержание липидов (почти 2/3 массы миелина) выявляется при обработке препаратов четырехокисью осмия, окрашивающей миелиновую оболочку в темно-коричневый цвет. По ходу миелинового волокна имеются сужения — узловые перехваты (перехваты Ранвье). Они соответствуют границе смежных нейролеммоцитов. Каждый межузловой сегмент оболочки волокна представлен одним нейролеммоцптом. Миелиновые волокна толще безмиелиновых. Скорость проведения нервного импульса по ним составляет 5-120 м/с, тогда как по безмиелиновым волокнам импульс проводится со скоростью 1-2 м/с.

Сложные взаимоотношения между нервными и глиальными клетками складываются при формировании чувствительных нервных окончаний (рецепторов) и двигательных нервных окончаний (эффекторов).

Нервные окончания — концевой аппарат нервных волокон, формирует межнейрональные контакты, или синапсы, рецепторные (чувствительные) окончания и двигательные (эффекторные) окончания.

Синапс (от synapsis — соединение) — специализированный для передачи нервных импульсов контакт между двумя нейронами или между нейроном и эффектором. Процессы возбуждения нейронов, возникновение импульсов и распространение их по отросткам связаны с изменениями в плазмолемме. Она является структурной основой возникновения и передачи потенциалов действия. Плазмолемма имеет существенные особенности строения и функции в участках, входящих в состав синапсов.

Межнейрональные синапсы бывают нескольких видов: аксосоматические (между аксоном одного нейрона и телом другого нейрона); аксодендритические (между аксоном одного нейрона и дендритом другого нейрона); аксоаксональные (между аксонами двух нейронов). Описаны также синапсы соматосоматические, дендродендритические и др.

Читайте также:  Почему может болеть шея

Все синапсы по механизму передачи импульсов между нервными клетками подразделяются на 3 типа: синапсы с химической передачей, электротонические и смешанные синапсы. Типичный синапс с химической передачей состоит из пресинаптической и постсинаптической частей, а также синаптической щели. Пресинаптическая часть включает концевое расширение аксона, ограниченное пресинаптической мембраной. Специфическими структурами этой части являются синоптические пузырьки, содержащие нейромедиаторы. Пузырьки бывают со светлым и электронно-плотным содержимым и называются в связи с этим агранулярными и гранулярными.

По форме они подразделяются на круглые и уплощенные. На внутренней поверхности пресинаптической мембраны расположены конусовидные электронно-плотные образования — пресинаптические уплотнения. В цитоплазме пресинаптической части имеются митохондрии. Синаптическая щель размером 20-30 нм содержит филаменты, связывающие наружные слои плазмолеммы контактирующих нейронов.

Постсинаптическая часть в составе плазмолеммы второго нейрона имеет рецепторы к медиатору, который выделяется в синаптическую щель при деполяризации мембраны первого нейрона. Внутренняя поверхность постсинаптической мембраны характеризуется наличием электронно-плотного слоя цитоплазмы — постсинаптические уплотнения.

Схема строения синапса

Нервное волокно – это удлиненный отросток нейронов, покрытый леммоцитами и миелиновой или безмиелиновой оболочкой. Основной его функцией является проводимость нервных импульсов. В периферической и центральной нервной системе преобладают мякотные (миелиновые) нервные волокна, которые иннервируют скелетную мускулатуру, безмякотные находятся в симпатическом отделе вегетативной системы и распространяются на внутренние органы. Волокна, не имеющие оболочки, называются голыми осевыми цилиндрами.

Миелинизация

Нервное волокно имеет в основе отросток нейрона, который образует своеобразную ось. Снаружи он окружен миелиновой оболочкой с биомолекулярной липидной основой, состоящей из большого количества витков мезаксона, который по спирали накручивается на нейроновую ось. Таким образом, происходит миелинизация нервных волокон.

Миелиновые нервные волокна периферической системы сверху дополнительно покрыты вспомогательными Шванновскими клетками, поддерживающими аксон и питающими тело нейрона. Поверхность мякотной мембраны имеет интервалы – перехваты Ранвье, в этих местах осевой цилиндр прикрепляется к наружной Шванновской мембране.

Миелиновый слой не обладает электропроводящими свойствами, их имеют перехваты. Возбуждение происходит в ближайшем к месту воздействия внешнего раздражителя интервале Ранвье. Импульс передается скачкообразно, от одного перехвата к другому, это обеспечивает высокую скорость распространения импульса.

Миелиновые нервные волокна регулируют обмен веществ в мышечной ткани, обладают высоким сопротивлением по отношению к биоэлектрическому току.

Промежутки Ранвье генерируют и усиливают импульсы. У волокон центральной нервной системы нет Шванновской мембраны, эту функцию выполняют олигодендроглии.

Безмякотные ткани имеют несколько осевых цилиндров, у них нет миелинового слоя и перехватов, сверху покрыты Шванновскими клетками, между ними и цилиндрами образуются щелевидные пространства. Волокна имеют слабую изоляцию, допускают распространение импульса из одного отростка нейрона в другой, на всем протяжении контактируют с окружающей средой, скорость проведения импульсов гораздо ниже, чем у мякотных волокон, при этом организму требуется большее количество энергии.

Из мякотных и безмякотных отростков нейронов формируются крупные нервные стволы, которые, в свою очередь, разветвляются на более мелкие пучки и заканчиваются нервными окончаниями (рецепторные, двигательные, синапсы).

Нервные окончания – это конец миелиновых и безмиелиновых нервных волокон, который формирует межнейронные контакты, рецепторные и двигательные окончания.

Принципы классификации

Разные типы нервных волокон имеют неодинаковую скорость проведения импульсов возбуждения, это зависит от их диаметра, длительности потенциала действия и степени миелинизации. Существует прямо пропорциональная зависимость между скоростью и диаметром волокна.

Структурно-функциональный метод классификации нервных волокон Эрлангера-Гассера по скорости проведения нервных импульсов:

  • Миелиновое нервное волокно группы А: α, β, Υи δ. Самый большой диаметр и толстую оболочку имеют ткани α – 20 мк, они обладают хорошей скорость проводимости импульсов – 120 м/сек. Эти ткани иннервируют источник возбуждения из столба спинного мозга к скелетным рецепторам мышц, сухожильям, отвечают за тактильные ощущения.

Остальные типы волокон имеют меньший диаметр (12 мк), скорость проведения импульса. Эти ткани передают сигналы от внутренних органов, источников боли в ЦНС.

  • Миелиновые волокна группы В относятся к автономной нервной системе. Общая скорость проведения импульса составляет 14 м/сек, потенциал действия в 2 раза больше, чем у волокон группы А. Миелиновая оболочка слабо выражена.
  • Безмиелиновые волокна группы С имеют очень маленький диаметр (0,5 мк) и скорость возбуждения (6 м/сек). Эти ткани иннервируют симпатическую нервную систему. К данной группе также относятся волокна, которые проводят импульсы от центров боли, холода, тепла и давления.

Отростки нейронов делят на афферентные и эфферентные. Первый тип обеспечивает передачу импульсов от рецепторов тканей в центральную нервную систему. Второй тип передает возбуждение от ЦНС к рецепторам тканей.

Функциональная классификация нервных волокон афферентного типа по Ллойду-Ханту:

Демиенилизация

Процесс демиелинизации нервных волокон – это патологическое повреждение миелиновой оболочки, которое вызывает нарушение функционирования тканей. Вызывают патологию воспалительные процессы, метаболические нарушения, нейроинфекция, интоксикация или ишемия тканей. Миелин замещается фиброзными бляшками, в результате нарушается проведение импульсов.

Первый тип демиелинизации – это миелинопатия, вызванная аутоиммунными реакциями организма, болезнью Канавана, синдромом Гийена-Барре, амиотрофией Шарко-Мари-Тута.

Читайте также:  Анна владимировна васильева

Второй тип – это миелинокластия. Патология характеризуется наследственной предрасположенностью к разрушению миелиновой оболочки (болезнь Бинсвангера).

Демиелинизирующие заболевания

Заболевания, приводящие к разрушению миелиновой оболочки, чаще всего имеют аутоиммунную природу, другой причиной может быть лечение нейролептиками или наследственная предрасположенность. Разрушение липидного слоя вызывает снижение скорости проведения импульсов раздражения.

Заболевания разделяют на те, которые затрагивают центральную нервную систему и патологии, повреждающие периферическую сеть. Болезни, которые влияют на работу ЦНС:

  • Миелопатия спинного мозга возникает в результате сдавливания миелиновых волокон межпозвоночными грыжами, опухолями, костными осколками, после инсульта спинного мозга. У больных снижается чувствительность, мышечная сила в области поражения, возникают парезы рук или ног, нарушается работа кишечника, мочевыводящей системы, развивается атрофия мышц нижних конечностей.
  • Лейкодистрофия головного мозга вызывает поражение белого вещества. У пациентов нарушена координация движений, они не могут держать равновесие. Развивается мышечная слабость, появляются непроизвольные судороги, нервный тик. Постепенно ухудшается память, интеллектуальные способности, зрение и слух. На поздних стадиях возникает слепота, глухота, полный паралич, трудности во время проглатывания пищи.
  • Мелкоочаговая лейкоэнцефалопатия головного мозга чаще всего поражает мужчин старше 60 лет. Основными причинами является артериальная гипертензия и наследственная предрасположенность. У пациентов ухудшается память и внимание, появляется заторможенность, трудности с речью. Замедляется походка, нарушается координация движений, появляется недержание мочи, больному тяжело глотать пищу.
  • Синдром осмотической демиелинизации характеризуется распадом миелиновых оболочек в тканях головного мозга. У больных отмечается расстройство речевого аппарата, постоянное чувство сонливости, депрессии или повышенная возбудимость, мутизм, парез всех конечностей. На ранних стадиях заболевания процесс демиелинизации обратим.
  • Рассеянный склероз проявляется онемением одной или двух конечностей, частичная или полная потеря зрения, боль при движении глаз, головокружение, быстрая утомляемость, тремор конечностей, нарушение координации движений, покалывание в различных частях тела.
  • Болезнь Девика – это воспалительный аутоиммунный недуг, который поражает зрительный нерв и ствол спинного мозга. К симптомам относится различная степень нарушения зрения, вплоть до слепоты, парапарезы, тетрапарезы, нарушение функционирования органов малого таза.

Симптомы заболеваний зависят от области поражения миелиновых волокон. Выявить процесс демиелинизации можно с помощью компьютерной томографии, магниторезонансной терапии. Признаки поражения периферической нервной системы обнаруживаются на электромиографии.

Мне посчастливилось закончить Ленинградский электротехнический институт связи имени проф. М.А Бонч-Бруевича (в 1961 году), и вечернее отделение Волгоградского медицин-ского института (в 1971 году). Я думал, что такое сочетание будет востребовано медици-ной. Так оно и оказалось: я был востребован для ремонта аппаратуры.
Но меня интересовали электрические процессы. Здесь я хочу сказать о моём видении фе-номена передачи нервного импульса по аксону, волокну толщиной 20-40 микрон на рассто-яние до 1 метра со скоростью порядка 100 метров в секунду. В этом феномене наиболее полно используется представление моей специальности радиоинженера – формирование прямоугольных импульсов с высокой крутизной фронта. Рисунки взяты из картинок вики-педии.

На идею меня навёл факт существование вокруг аксона многослойной миелиновой обо-лочки, наподобие коаксиального кабеля, что является условием для передачи импульса с высокой крутизной фронта из-за снижения удельной электроёмкости вдоль кабеля (аксо-на).
Какие импульсы и как передаются к синапсу?
От тела нейрона до булавовидного окончания синапса протянулись микротрубочки. В них, перемещаются от тела нейрона, где они синтезируются, к конечному образованию – синап-су молекулы медиатора, которые в электрическом поле становятся катионами.
Тело нейрона имеет мембранный потенциал порядка — 0.1 вольта. Аналогичный потенци-ал поддерживается ионными помпами и на мембране булавовидного образования синапса.
Представим, что к телу нейрона поступает импульс, который деполяризует его мембрану до уровня всего тела, примем его за нулевой. Тогда по микротрубочкам, как по пучку про-водов, к булавовидному окончанию синапса поступит импульс положительной полярности.
Посчитаем напряжённость электрического поля, возникающего в булавовидном образо-вании синапса. На расстоянии порядка 100 нанометров будет действовать импульс 0.1 вольта.
Расчёт даст цифру 10000 вольт/см. В действительности есть потери, как от сопротивления самого пучка микротрубочек, так и в крутизне переднего фронта импульса из-за остатков удельной ёмкости вдоль аксона, но важно, что при реальном скачке напряжённости в жид-кой среде возникает электрогидродинамический удар – эффект Юткина.
В синаптическую щель вбрасывается медиатор и происходит деполяризация поверхно-стей синаптической щели. Их мембранный потенциал сбрасывается.
В это время сам нейрон возвращается к исходному состоянию и восстанавливает свой мембранный потенциал до — 0.1 вольта. К булавовидному образованию синапса по микро-трубочкам приходит импульс отрицательной полярности, и медиатор – катион всасывается из синаптической щели в булавовидное образование. Мембранный потенциал булавовид-ного образования синапса восстанавливается, и нейрон готов к следующему сигналу со стороны нейрона.
Такое представление объясняет все наблюдаемые явления в комплексе: обязательное многослойное окутывание аксонов миелиновой оболочкой специализированными шван-новскими клетками, быстрое перемещение сигнала не в виде нервного импульса, а в каче-стве электрического сигнала по пучку микротрубочек от тела нейрона к синапсу, механизм разрыва мембраны синапса от электрогидродинамического удара и обратное всасывание медиатора.

Ссылка на основную публикацию
Фрагменты плоского эпителия в матке
Принято выделять две разновидности эпителия шейки матки – плоский и цилиндрический. При диагностировании патологии рассматривается норма и отклонения обоих его...
Фото пораженных легких туберкулезом
, MD, MPH , Harvard Medical School; , MD, Harvard Medical School Last full review/revision April 2018 by Dylan Tierney,...
Фото постельных клопов и клещей
От появления кровососущих насекомых в доме не застрахован никто. Самыми известными и распространенными паразитами являются мебельные клещи и клопы. Они...
Фракционный лазер удаление рубцов
Применение лазера FOTONA в гинекологии Лечение недержания мочи лазером Лечение гипертонии Лечение ишемической болезни сердца Прием кардиолога Контурная пластика лица...
Adblock detector