Этапы развития биотехнологии как науки

Этапы развития биотехнологии как науки

Чего хотят пациенты? Качественных и доступных медицинских услуг. Чего хотят врачи? Достойной зарплаты и надлежащих условий труда!

  • Главная
  • Карта
  • Популярное
  • Контакты

Практическая медицина одновременно является наукой и искусством

Без собственной ответственности медицина сама ничего не сделает

Быстрый рост медицины как науки вызывает ряд тревожных вопросов

Медицина — это система научных знаний и практических действий

Центральными понятиями медицины является здоровье и болезнь

Этапы развития биотехнологии

В развитии биотехнологии выделяют следующие периоды:

Последний специально отделяется от предыдущего, так как биотехнологи уже могут создавать и использовать в производстве неприродные организмы, полученные генно-инженерными методами.

1) Эмпирическая биотехнология неотделима от цивилизации, преимущественно как сфера производства (с древнейших времен — приготовление теста, получение молочнокислых продуктов, сыро-, виноделие, пивоварение, ферментация табака и чая, выделка кож и обработка растительных волокон). В течение тысячелетий человек применял в своих целях ферментативные процессы, не имея понятия ни о ферментах, ни о клетках с их видовой специфичностью и, тем более, генетическим аппаратом. Причем прогресс точных наук долгое время не влиял на технологические приемы, используемые в эмпирической биотехнологии.

2) Быстрое развитие биотехнологии как научной дисциплины с середины XIX в. было инициировано работами Л. Пастера (1822 — 1895).

Именно Л.Пастер ввел понятие биообъекта, не прибегая, впрочем, к такому термину, доказал «живую природу» брожений: каждое осуществлявшееся в производственных условиях брожение (спиртовое, уксусно-, молочнокислое и т.д.) вызывается своим микроорганизмом, а срыв производственного процесса обусловлен несоблюдением чистоты культуры микроорганизма, являющегося в данном случае биообъектом.

Практическое значение этих исследований Л. Пастера сводится к требованию поддержания чистоты культуры, т.е. к проведению производственного процесса с индивидуальным, имеющим точные характеристики биообъектом.

Позднее, приступив к работам в области медицины, Л. Пастер исходил из своей концепции о причине заразных болезней, сводя ее в каждом случае к конкретному, определенному микроорганизму. Хотя техника того времени не позволяла увидеть возбудителя инфекции, как, например, в случае вируса бешенства, однако Л.Пастер считал, что «мы его не видим, но мы им управляем». Целенаправленное воздействие на возбудителя инфекции (в целях ослабления его патогенности) позволяет получать вакцины.

Ослабленный патоген и животное, в организм которого он введен, могут рассматриваться как своеобразный биообъект, а получаемая вакцина — как биотехнологический препарат. Л. Пастер создал строго научные основы получения вакцин, тогда как замечательные достижения Э.Дженнера в борьбе с оспой были результатом освоения эмпирического опыта индийской медицины.

3) Современная биотехнология, основанная на достижениях молекулярной биологии, молекулярной генетики и биоорганической химии (на практическом воплощении этих достижений), выросла из биотехнологии Л.Пастера и, являясь также строго научной, отличается от последней прежде всего тем, что способна создавать и использовать в производстве неприродные биообъекты, что отражается как на производственном процессе в целом, так и на свойствах новых биотехнологических продуктов.

Говоря о биотехнологии, нельзя не упомянуть публикацию в 1953 г. первого сообщения о двуспиральной структуре ДНК, ставшего основополагающим для возникновения указанных фундаментальных дисциплин, достижения которых реализуются в современной биотехнологии.

В результате серий публикаций в 1960-х гг. в литературу были внедрены принципиально важные для биотехнолога понятия «оперон» и «структурный ген».

В 1973 г. было опубликовано сообщение об успешном переносе генов из одного организма в другой — в сущности, уже о технологии рекомбинантной ДНК, определяющей возникновение генетической инженерии.

В 1980 г. Верховный суд США признал, что генно-инженерные микроорганизмы могут быть запатентованы, а развитие биотехнологических методов получило юридический статус.

В 1990 г. произошли два принципиально важных события: была разрешена генотерапия (но только применительно к соматическим клеткам человека, т.е. без передачи чужого гена потомству) и утвержден международный проект «Геном человека». Образно говоря, человеку было юридически разрешено познавать свою сущность.

В настоящее время интенсивно растет количество таких успешно применяемых в медицине биотехнологических продуктов, как рекомбинантные белки, вторичные метаболиты микроорганизмов и растений, а также полусинтетических лекарственных агентов, являющихся продуктами одновременно био- и оргсинтеза.

Боли в области шеи
Боли в области шеи имеют бесконечный перечень причинных факторов, включающих дегенеративные заболевания, инфекции, неоплазмы, врожденные аномалии развития, воспалительное (асептическое) поражение суст .

Аритмии сердца
Аритмии сердца – нарушение частоты, ритмичности и последовательности возбуждения и сокращения отделов сердца. Аритмии встречаются очень часто. Они возникают в результате заметных структурных из .

Астма, бронхит и бронхолегочная дисплазия
Астма — это заболевание трахеобронхиального дерева, которое характеризуется бронхиальной гиперреактивностью и последующей обструкцией воздушного потока вследствие воздействия какого-либо раздраж .

Биотехнология сегодня развивается бурными темпами. Как наука, она изучает внедрение производственных процессов, в основе которых лежит практическое использование микроорганизмов, всевозможных биологических систем. Это не только растительные или животные ткани, но и протопласты, рекомбинантные ДНК, а также полностью генетически модифицированные организмы.

История развития биотехнологии

Глубоко в древности биотехнология развивалась эмпирическим путем: выпечка хлеба, изготовление вина, сыроварение, силосование кормов для скота – все это различные микробиологические процессы, за которыми веками велись многовековые наблюдения.

Настоящая же генная инженерия, биотехнология, как современный вид науки, начала развиваться только лишь в середине прошлого столетия.

Основные этапы и периоды развития биотехнологии

История развития биотехнологии условно делится на три последовательных этапа. Первый – это развитие биотехнологии в разрезе исторического аспекта.

При раскопках древних поселений в Месопотамии, в Египте, а также Греции были обнаружены остатки больших и малых пекарен и пивоварен.

Известно, что уже шумеры умели делать пиво, причем ассортимент его был довольно широк (около двадцати различных сортов). На территории Древней Греции и Римской империи было активно развито виноделие и производство сыра.

Изготовляли и льняное волокно, этот процесс происходит с участием микроскопических грибов и бактерий.

В конце девятнадцатого века развитие биотехнологии вступило во второй этап, она начала развиваться, как наука. Появились первые ученые генетики, микробиологи и вирусологи.

В начале прошлого века были созданы первичные установки по производству метана. Отходы сельскохозяйственного производства превращались в биологический газ и органическое удобрение.

В середине двадцатого века начали производить антибиотики, как следствие, появились предприятия, которые с помощью микроорганизмов не только аминокислоты и витамины, но и органические кислоты, а также ферменты.

В конце двадцатого века развилась генная и клеточная инженерия, что ознаменовало третий этап развития биотехнологии. Фактическим «днем рождения» этого вида современной науки считают 1972-ой год, время создания первой гибридной ДНК, в которую встроили чужеродные гены.

Итак, биотехнология, как постоянно и динамично развивающаяся наука, охватывает несколько больших периодов. Первый их них – конец 19-го и начало двадцатого века. Это было время первых великих свершений, таких, как открытие структуры белков или применение вирусов при изучении генетики клеточных организмов.

Во втором периоде биотехнология сформировалась, как научно-техническая отрасль, уже производящая препараты. Наконец, в третьем периоде начала развиваться генная и клеточная инженерия.

Основные направления развития биотехнологии

Основа биотехнологии – это генетическая (клеточная) инженерия и биохимия. Развитие клеточной инженерии считается на данный момент одним из самых перспективных направлений.

Ученые проводят культивирование клеток микроорганизмов, растений и животных, осуществляются такие манипуляции, как слияние клеток либо пересадка органоидов.

Основными направлениями развития биотехнологии считаются:

  • создание новых видов продуктов питания и животных кормов, производство их;
  • выведение новых штаммов полезных микроорганизмов;
  • создание новых пород животных;
  • выведение новых сортов растений;
  • создание и применение препаратов по защите растений от болезней и вредителей;
  • применение новых биотехнологических методов по защите окружающей среды.
Читайте также:  Как без клея наклеить ресницы накладные

Кроме этого, активно развивается направление биологически активных соединений с помощью микроорганизмов и культивируемых эукариотических клеток. Сюда входят ферменты, витамины, а также гормоны и антибиотики.

Значение биохимии для биотехнологии

Биотехнология как наука на современном этапе является синтезом разделов биохимии в соединении с генной инженерией. Например, на данный момент ведутся активные исследования в области экологической биотехнологии, но самая большая роль биохимии в развитии биотехнологий – создание новых методов производства продуктов питания.

Дело в том, что почти любая технология по производству пищевых продуктов основана на биохимических процессах.

Поэтому изучение процесса обмена веществ в живой клетке – актуальный вопрос для развития биотехнологии. Это имеет большое значение не только для животноводства и растениеводства или переработки промышленным способом сельскохозяйственного сырья, но и для медицины, а также экологии.

Состояние и перспективы развития биотехнологии в современном мире

Современная биотехнология привлекает внимание инвесторов не только в нашей стране, но и во всем мире. Эксперты и аналитики прогнозируют, что биотехнологии станут самым динамично развивающимся и самым прибыльным бизнесом нынешнего, XXI века.

Быстрыми темпами развиваются такие отрасли, как современные биологические методы защиты культурных растений, биоэнергетика и биодеградируемые полимеры, а также природоохранные биотехнологии. Ведутся научные работы по созданию новых биополимеров, в будущем они могут заменить ныне популярные ныне пластмассы.

Биополимеры имеют большое преимущество в сравнении с пластмассами, так как они нетоксичны и могут разлагаться после их применения, не загрязняя при этом окружающее пространство.

Конструирование необходимых генов даст возможность управлять жизнедеятельностью не только растений, но и животных, создавать новые организмы с иными свойствами.

Чем объясняется бурное развитие биотехнологии

Современные биотехнологии сыграют большую роль в качественном улучшении жизни человека, развитию экономического роста стран. Посредством биотехнологий получают новые средства для диагностики, вакцины, продукты питания, лекарства.

Биотехнология помогает в увеличении урожайности всех злаковых культур, что более чем актуально, принимая во внимание рост численности населения нашей планеты.

В некоторых странах, где значительные объемы биомассы не используются полностью, биотехнология в обозримом будущем превратит их в ценные продукты или в биологические виды топлива. Биотехнология все больше перестает быть прикладной наукой, она активно входит в обычную жизнь людей, помогая решать насущные проблемы современного человечества.

Развитие биотехнологий в России

Когда говорят о развитии биотехнологий в России, приходится учитывать длительный период упадка и деградации научных учреждений. Сейчас, после нескольких лет интенсивного роста, российские биотехнологии представлены на мировом рынке в количестве 0,1%, а в 1885 году СССР имел долю 5% на рынке продукции, относимой к биотехнологиям. Это медицинские препараты, ферменты, гормональные препараты, чистые линии микроорганизмов, используемых в научных исследованиях, сельскохозяйственном производстве и очистке окружающей среды от вредных отходов.

Интересна судьба самого громкого и скандального проекта, ставшего достоянием гласности в конце восьмидесятых. Это БВК, белково-витаминные концентраты, получаемые из парафинов нефти при использовании специально выведенных бактериальных культур.

В прессе был поднят шум, тему обсуждали эмоционально, общественность требовала закрытия «вредного проекта». Однако работа была уже сделана – бактерии, питающиеся нефтепродуктами, существовали.

Для них нашлась полезная функция: очистка воды и земли от разлившейся нефти. Сейчас вода в морских и речных портах содержит значительно меньше нефтепродуктов, чем в 70-80 годы, благодаря их биологическому разложению.

При помощи прожорливых бактерий очищают территорию на предприятиях от мазута и других нефтепродуктов. Трудно переоценить пользу от этих микроорганизмов – ведь нефтяная пленка в двадцатом веке грозила погубить моря и океаны!

Производство белковой продукции из нефти не было поставлено на поток, но польза от данной биотехнологии несомненна!

В 2012 году российское правительство значительно увеличило государственное финансирование научных исследований в этой отрасли.

Интересно, что ряд проектов осуществляется на общественные пожертвования. К таким проектам относится исследование микрофлоры кишечника и на основе результатов — научно разработанные рекомендации по питанию, физическим нагрузкам, образу жизни. Эта тема популярна в России и в мире.

Этические аспекты развития биотехнологии

Перспективы развития биотехнологий поражают воображение, а в ряде случаев вызывают страх и у людей. По поводу тех или иных исследований периодически разгораются дискуссии, и противники генной инженерии, клонирования организмов или исследования человеческого генома неоднократно требовали запретить все работы в этом направлении. Примером общественных протестов служит упоминавшаяся технология БВК.

Много страстей кипело вокруг генной инженерии. Люди опасались появления уродливых, непредсказуемых, всемогущих существ, созданных путем комбинации генов от несовместимых в природе видов. Фантастические произведения и фильмы способствовали распространению страхов.

Были и научно обоснованные возражения: генетически модифицированные организмы не изучены, употребление кукурузы и сои с модифицированными генами может вызвать болезни. В результате в Европе и России запрещено выращивание и использование ГМО.

Развитие биотехнологии и генной инженерии в современной науке

Биотехнологии и генная инженерия, более чем все остальные, связана с фундаментальными научными исследованиями. Создание организмов с «заданными параметрами», лечение генетически обусловленных болезней, производство белковой массы вне организма, внедрение в организм «биологических чипов», влияющих на жизнедеятельность – все эти направления нуждаются в дорогостоящих исследованиях, сложном оборудовании и высококвалифицированных специалистов.

На стыке двадцатого и двадцать первого века был задуман и осуществлен грандиозный проект – прочитан геном человека. Это был большой труд, в котором участвовало много лабораторий в разных странах мира. Одним из продуктов этих исследований стало появление технологии идентификации личности по ДНК, получение информации о родстве (установление отцовства). Но от прочтения генома ученые ожидали большего. Информация, зашифрованная в ДНК, огромна и ее изучение, расшифровка еще сложнее, чем процедура исследований.

Вклад биотехнологии в развитие медицины

Одним из «подарков дьявола» считалась возможность определения по ДНК генетически запрограммированных болезней. С одной стороны, это возможность предупредить человека об опасностях, но такая информация сама по себе травматична, и способна провоцировать болезни.

Однако «предопределенность» болезней оказалась отнюдь не абсолютной. У вполне здоровых пожилых людей при исследовании обнаруживаются гены болезней, от которых они должны давно умереть. Хотя наследственность никто не отменял, как и генетическую предрасположенность к тем или иным заболеваниям.

Сейчас идет речь не о том, чтобы просто получать информацию о будущих болезнях, но о том, что есть возможность исправлять дефектные участки ДНК. И это было бы прекрасно – ведь накопление генетических ошибок в человеческом сообществе способствует деградации вида гомо сапиенс.

Проблемы биотехнологии

Сейчас возникают споры о генной медицине, о клонировании организмов, об этических вопросах исследования стволовых клеток. На повестке дня – «биопринтер», при помощи которого признается возможным выращивание органов для трансплантации.

На исследования в этом направлении направляются огромные средства, прежде всего в США. Одновременно возникают опасения: вдруг возникнет тенденция выращивания клонов в качестве «идеальных доноров»?

Впрочем, на пути многих амбициозных и не слишком щепетильных в нравственном отношении проектов возникают препятствия, положенные самой природой.

Фантастические успехи от применения стволовых клеток для лечения и омоложения – и их перерождение в злокачественные опухоли; рождение клонированных животных – и их ранняя смерть, слабое здоровье.

Живая материя по-прежнему непостижима, несмотря на успехи в ее познании, и пределы человеческого вмешательства в ее основы — ограничены.

Развитие биотехнологии до 2020

Перспективы биотехнологии на ближайшее будущее можно разделить на рекламные и научно обоснованные. К широко разрекламированным проектам относятся, например, «таблетки молодости» — их обещают выпустить на рынок как раз к 2020 году. Однако скептики говорят, что таких сенсаций было много, начиная со времен алхимии…

Читайте также:  Со скольки лет детям можно давать валерьянку в таблетках

Более реалистично выглядит 3D принтер, наносящий клеточные культуры на матрицу с питательным раствором, и формирующий искусственные органы. Еще один медицинский проект – лечение тяжелых ожогов путем нанесения на пораженный участок стволовых клеток, которые в считанные дни образуют новую кожу.

Генетический ремонт – направление, которое развивается и будет развиваться, и в него инвестируются большие деньги.

Компании, занимающиеся биотехнологиями

Лидерами в области биотехнологий являются фармацевтические фирмы США, Китая, Индии, Европы.

Биотехнологии условно подразделяют на группы:

  • красная биотехнология – связанная с медициной и «лечением» генетического кода, на рынке биотехнологий ей принадлежит доля более 70%;
  • зеленая – генная инженерия, работающая для сельского хозяйства;
  • белая – производство биотооплива;
  • серая – защита экологии, борьба с отходами;
  • синяя – использование биологических ресурсов океана.

Лидеры «красной биотехнологии» — американские фирмы Genentech, Novartis, Merck&Co, Pfizer, Johnson & Johnson, Sanofi.

В области разработки и производства ГМО лидирует транснациональная компания Monsanto Company.

Белая, серая, синяя биотехнологии существенно отстают от лидеров. Их полезная деятельность дает не слишком быстрый экономический эффект, поэтому в списках лидеров они не значатся.

Три этапа в развитии биотехнологии. Термин «биотехнология» впервые в 1917 г. применил венгерский инженер К. Эреки (1865— 1933).

Газета «Комсомольская правда» в 2001 г. так описывала колоссальные возможности биотехнологии:

«Японские медики приступили к беспрецедентному эксперименту по выращиванию человеческих органов из клеток зародышей — оплодотворённых яйцеклеток. Культивировать «запчасти» будут из так называемых эмбриональных стволовых клеток, из которых состоит зародыш любого живого существа на начальном этапе развития. Клетки обладают полной генетической информацией и являются предшественниками всех органов человека. Если поместить такую клетку в необходимую питательную среду, из неё можно вырастить какой угодно орган — будь то сердце, печень или нервные волокна».

Можно выделить три этапа становления биотехнологии как отрасли производства, а затем и науки: ранняя биотехнология, новая биотехнология и новейшая биотехнология.

Ранняя, или стихийная, биотехнология связана со знакомыми человеку с древнейших времён микробиологическими процессами. Издавна люди пекли хлеб, готовили сыры и кисломолочные продукты, заквашивали овощи, варили квас и пиво, делали вино. В основе технологии производства всех этих продуктов лежат процессы брожения.

Как вы знаете, в живых организмах ферменты ускоряют множество биохимических процессов. Оказывается, многие ферменты сохраняют свою биологическую активность и вне живой клетки, что стало основой их использования на заре биотехнологии.

Период новой биотехнологии датируется началом XX в., когда впервые удалось вырастить вне живого организма клетки и ткани растений и животных. Начиная с середины 70-х гг. XX в. учёные нашли способы, а инженеры — технические решения по использованию биологических методов для борьбы с загрязнением окружающей среды, производства ценных биологически активных веществ (антибиотиков, ферментов, гормональных препаратов, витаминов и др.), для защиты растений от вредителей и болезней. На основе микробиологического синтеза были разработаны промышленные методы получения белков и аминокислот, используемых в качестве кормовых добавок.

Современный этап развития биотехнологии можно назвать новейшей биотехнологией. Специалистам-биотехнологам стали доступны методы изменения генотипа животных и растений с целью придания им новых свойств и качеств, методы выращивания тканей и органов вне живого организма, получения точных копий родительского организма из одной-единственной его клетки. Достижения новейшей биотехнологии базируются на интеграции таких биологических дисциплин, как физиология, микробиология, биохимия, биофизика, молекулярная генетика, иммунология.

Генная инженерия. В современной биотехнологии выделяют три раздела, три относительно самостоятельных направления; генная (или генетическая) инженерия, клеточная инженерия, биологическая инженерия.

Когда мы хотим отметить какую-либо характерную особенность человека, унаследованную им от родителей, например склонность к творчеству, высокий интеллект или, напротив, вредную привычку, мы сокрушённо вздыхаем: «Что поделаешь, это гены!» Что же это за таинственные гены, делающие нас похожими на своих родителей?

Напомним, что в ядрах клеток живых организмов содержатся хромосомы. Основу любой хромосомы составляет макромолекула дезоксирибонуклеиновой кислоты (ДНК) очень большой длины. Как вы знаете, полимерная молекула ДНК состоит из двух параллельных нитей-макромолекул, связанных друг с другом водородными связями. Каждая «нить» представляет собой последовательно соединённые друг с другом нуклеотиды и напоминает очень длинные бусы. Например, в молекулах ДНК хромосом человека насчитывается от 50 до 245 млн «бусинок»-нуклеотидов. Макромолекула ДНК скручена в спираль (рис. 144), поэтому её размер обычно не превышает 20 мкм, а в растянутом виде длина хромосомы человека может достигать 5 см. Помимо ДНК в состав хромосомы входят молекулы белков.

Рис. 144. Зашифрованная наследственная информация в геноме человека

Вы знаете, что под влиянием факторов внешней среды у всех видов живых организмов происходят мутации.

Можно ли провести мутацию искусственным путём, т. е. внедрить в ДНК новый, несвойственный данному организму ген? Ведь таким образом можно «привить» живому организму полезное качество, которого у него не было. В 1973 г. американские учёные С. Коэн и Э. Чанг встроили в ДНК бактерии участок ДНК лягушки. Свершилось небывалое: бактерия стала вырабатывать белок, характерный для лягушки, и даже передавать лягушечью ДНК потомкам! Так была показана принципиальная возможность встраивать чужие гены в геном определённого организма.

Последние десятилетия генная инженерия поистине творит чудеса. Японским учёным удалось ввести в ДНК свиней ген шпината, в результате чего мясо стало менее жирным. Генетически модифицированные растения произрастают уже на миллионах гектаров сельскохозяйственных угодий. Они отличаются от своих «собратьев» большей урожайностью, устойчивостью к вредителям, болезням и засухе, большим содержанием полезных питательных веществ.

Трансгенная кукуруза добавляется в кондитерские и хлебобулочные изделия, безалкогольные напитки; модифицированная соя входит в состав рафинированных масел, маргаринов, жиров для выпечки, соусов для салатов, майонезов, макаронных изделий, варёных колбас, кондитерских изделий, белковых биодобавок, кормов для животных и даже в состав детского питания.

Создание генетически модифицированных растений, устойчивых к сорнякам и вредителям, в несколько раз уменьшает расход гербицидов и ослабляет тем самым химическую нагрузку на окружающую среду. В сельскохозяйственную практику входят трансгенные сорта с повышенными потребительскими свойствами, например гороха, сои, злаков с улучшенным составом белков. Созданы трансгенные помидоры без зёрнышек, на подходе бескосточковые черешня, цитрусовые. Выведен даже сорт кубических арбузов (рис. 145), которые экономически выгодно транспортировать и складировать за счёт более плотной укладки. Методами генной инженерии канадскими учёными получен виноград, которому пересажен ген морозоустойчивости от дикой капусты, и в Канаде появились виноградники.

Рис. 145. Генно-модифицированные арбузы

В животноводстве с помощью генной инженерии получены высокопродуктивные породы животных — овец, свиней, кур.

В фармакологии методы генной инженерии дали возможность получить высокоэффективные вакцины против герпеса, туберкулёза, холеры; в нефтехимической промышленности — новые формы дрожжей и бактерий, способных уничтожать разливы нефти.

Вспомним, что гены — это участки ДНК хромосомы (несколько последовательно соединённых нуклеотидов), несущие информацию о строении одной молекулы белка или молекулы рибонуклеиновой кислоты (РНК), характерных для данного живого организма. Совокупность всех генов организма, содержащихся в хромосомах, называется геномом. По сути, геном — это зашифрованная информация об организме, инструкция по его рождению, росту, внешнему виду и поведению, размножению, старению и гибели. Представьте, что перед вами разобранный до мельчайших деталей игрушечный космический корабль. К нему придана инструкция по сборке — своеобразный «геном». Шаг за шагом, следуя инструкции, вы собираете космический аппарат. Естественно, в конечном счёте он должен выглядеть так, как показано на рисунке, а не превратиться в трактор или автомобиль. Если сборка проведена верно, ваш корабль будет представлять собой точную модель натурального объекта, который может взлететь и полностью выполнить программу космического полёта. Живой организм, в отличие от неодушевлённой конструкции, должен ещё оставить потомство, передав ему точную копию «технической характеристики» и «инструкцию по сборке» последующих поколений.

Читайте также:  Через сколько выветривается запах алкоголя изо рта

Клеточная инженерия. В самом начале XX в. учёные-ботаники впервые высказали мысль о том, что если живую клетку извлечь из организма, то в питательной среде она сможет существовать, функционировать и даже размножаться. Спустя несколько лет эту гипотезу удалось экспериментально подтвердить на животных клетках, а в 30-х гг. прошлого столетия — на клетках растений.

Суть метода клеточной инженерии схематично можно описать так. От живого организма, например растения, берётся небольшой кусочек ткани, скажем, листовой пластинки. Мы помним, что каждая клетка хранит в себе полный набор генов (геном) этого растения, но функции клеток дифференцированны, т. е. клетки листочка отличаются от клеток стебля, корня или цветка. Следовательно, задача клеточной инженерии на первом этапе — сделать так, чтобы клетки листа «забыли» о своей миссии и превратились просто в набор растительных клеток. Полученная масса клеток делится, размножается, растёт их число, образуется целая клеточная колония, называемая каллусной тканью. Её можно разделить на несколько частей, а далее вновь превратить клетки каллусной ткани в клетки нужного органа растения: корня, листа или верхушечной почки. Достигается это введением в питательную среду особых химических веществ — фитогормонов. И вот уже каждый отдельный кусочек каллусной ткани приобретает вид маленького растения, способного к самостоятельному росту и развитию. Из небольшого кусочка листа мы получили десяток новых растений — точных копий родительского организма.

Вершиной достижений клеточной инженерии можно считать клонирование организмов — создание точной копии живого существа. Выведенные российским генетиком и селекционером академиком В. А. Струнни-ковым (1914—2005) клоны шелкопряда известны на весь мир: искусственно полученные насекомые трудятся над производством шёлковой нити куда лучше своих природных собратьев. Наиболее известный феномен клеточной инженерии — клонирование домашних животных. В 1997 г. весь мир облетела весть об овечке Долли — клоне своей матери (рис. 146).

Рис. 146. Клонированная овечка Долли — точная копия материнского организма

Долли появилась на свет в июле 1996 г. благодаря клеточной инженерии. Однако клонирование животных на сегодняшний день представляет главным образом научный интерес. А вот выращивание новых тканей организма из отдельных клеток — уже реальность. Из клеток почки человека можно вырастить новый полноценный орган, который, в отличие от донорской почки, при пересадке не будет отторгаться организмом. Более того, появляется возможность производить ремонт повреждённого органа или выращивать запасной непосредственно в организме, а не в пробирке. Поистине клеточная инженерия способна творить чудеса!

Наиболее перспективным направлением сегодня является клонирование с использованием так называемых эмбриональных стволовых клеток. Вы прекрасно понимаете, что все клетки эмбриона в момент зачатия одинаковы. Главным свойством таких клеток является то, что генетическая информация, заключённая в их ядре, находится как бы в состоянии покоя, т. е. эмбриональные стволовые клетки ещё не запустили программы дифференциации в ту или иную ткань или орган. Удивительная способность этих клеток стать любыми клетками организма продиктована наличием в их ДНК всех генов, отвечающих за рост зародыша на ранней стадии развития эмбриона, т. е. генома. После получения специального сигнала эмбриональные стволовые клетки начинают своё превращение в клетки мозга, печени, сердца и т. д. Уникальность эмбриональных стволовых клеток также позволяет использовать их для выращивания огромного массива тканей и в принципе любого человеческого органа.

В биотехнологическом производстве клоны клеток используют как своеобразные химические фабрики для промышленного получения биологически активных веществ. Например, гормона эритропоэтина, который стимулирует образование красных кровяных телец, а также используется для предотвращения образования тромбов в кровеносных сосудах. Методами клеточной инженерии получены факторы свёртываемости крови для лечения страшного заболевания — гемофилии, инсулин для лечения диабета.

Биологическая инженерия. Вам хорошо известно, что все встречающиеся в природе живые организмы содержат ферменты — биологические катализаторы белковой природы, ускоряющие и регулирующие протекание миллионов биохимических реакций.

Задача биологической инженерии состоит в разработке технологии промышленного получения практически важных веществ или осуществления промышленных процессов при участии ферментов, как содержащихся в микроорганизмах, так и выделенных в свободном состоянии.

Ферментативные процессы сегодня используются во многих отраслях промышленности:

  • в пищевой — для выпечки хлеба, получения кисломолочных продуктов, производства сыров, осветления соков и др.;
  • в кожевенной и текстильной — для отделения шерсти от шкур и выделки кожи;
  • в фармацевтической — для получения лекарственных препаратов;
  • в сельском хозяйстве — для защиты растений от вредителей и профилактики заболеваний.

Микробиологические технологии используют сегодня в такой необычной для биотехнологии сфере, как металлургия. Например, известно, что более 75% запасов золота находится в природе не в виде самородков или золотого песка, а в виде вкраплений внутри кристаллических решёток сульфидных минералов — пирита (FeS2) и арсенопирита (FeAsS). Такое золото совершенно невозможно увидеть невооружённым глазом, а для его извлечения требуется химическое разрушение кристаллической решётки минерала — так называемое вскрытие породы. Как правило, вскрытие сульфидных минералов проводят обжигом руды. Но при этом в атмосферу выбрасывается огромное количество оксидов серы, потенциально опасных для окружающей среды и человека. Как альтернатива обжигу была разработана технология микробиологического вскрытия пород. Для этого руду измельчают и помещают в раствор кислоты с добавлением особых микроорганизмов. Они окисляют ионы двухвалентного железа до трёхвалентного, а атомы серы — до анионов серной кислоты. Продукты окисления растворяются в воде, а в нерастворимом осадке остаётся чистое золото. Процесс протекает с минимальными энергозатратами при комнатной температуре и значительно более эффективен, чем химические технологии. В Канаде, ЮАР и Португалии практикуется аналогичное извлечение урана из урансодержащих руд.

Стоит отметить также законченную в Институте микробиологии РАН работу над новым способом удаления метана в шахтах с использованием метанотрофных (питающихся метаном) бактерий. Нужно ли говорить об актуальности этой работы на фоне сообщений средств массовой информации о трагедиях на угольных шахтах!

Наиболее перспективным направлением биологической инженерии является создание иммобилизованных ферментов.

Такие ферменты широко применяются на производстве. Например, получаемая из дрожжей (рис. 147) инвертаза используется для изготовления искусственного мёда, лак-таза — для производства концентрированных кисломолочных продуктов без консервантов, а уреаза — для очистки крови в аппарате «искусственная почка».

Рис. 147. Мембрана с иммобилизованными клетками дрожжей

К иммобилизованным ферментам относятся бактериальные протеазы, которые применяются для производства синтетических моющих средств (энзимы, содержащиеся в них, позволяют удалять с тканей пятна крови, чая и т. д.), в кожевенном производстве (для удаления шерсти и дубления кож), резинотехнической промышленности (для получения губчатого латекса путём ферментативного разложения пероксида водорода).

Поистине прав был М. В. Ломоносов, сказав: «Широко распростирает химия руки свои в дела человеческие!»

Далее речь пойдёт о нанотехнологии, мы выясним, что она собой представляет, где применяется и какое имеет значение для развития энергетики, электроники, сельского хозяйства.

Ссылка на основную публикацию
Эслим форте инструкция
Владелец регистрационного удостоверения: Произведено: Контакты для обращений: Лекарственная форма Форма выпуска, упаковка и состав препарата Эссливер Форте ® Капсулы твердые...
Эреспал сироп доза для детей
Сироп эреспал — средство от кашля, помогающее убрать отечность и оказывающее противовоспалительное и отхаркивающее действие Его, как правило, назначают детям...
Эритематозная очаговая колопатия
Колопатии - это тип патологии слизистой оболочки толстой кишки, при котором доминирующими являются изменения невоспалительного характера. В большинстве случаев эти...
Эсмия рлс
Фармакологическая группа Естественными фолликулярными гормонами являются образуемые яичниками эстрадиол, эстрон и эстриол. Эти гормоны называют эстрогенами в связи с тем,...
Adblock detector